

i

JSheet Programmer’s Guide

Copyright Information

Copyright 2001, Investment Intelligence Systems Corporation. All Rights Reserved.

The information contained in this manual and accompanying software program is
copyrighted and all its rights are reserved by Investment Intelligence Systems Corporation
(IISC). IISC reserves the right to make periodic modifications of this product without
obligation to notify any person or entity of such revision. Copying, duplicating, selling, or
otherwise distributing any part of this product without the prior consent of an authorized
representative of IISC is prohibited.

JSheet and HyperSheet are registered trademarks of Investment Intelligence Systems
Corporation.

Disclaimer of Warranties

The software and users manuals are provided “as is” and without express or limited
warranty of any kind by either IISC or anyone who has been involved in the creation,
production, or distribution of the software, including, but not limited to the implied
warranties of the merchantability and fitness for a particular purpose. The entire risk as to
quality and performance of the software and users manuals is with you. Should the
software and users manuals prove defective, you (and IISC or anyone else who has been
involved in the creation, production, or distribution of the software) assume the entire cost
of all necessary servicing, repairs, or correction.

Some states do not allow the exclusion of implied warranties, so the above exclusion may
not apply to you.

Limitation of Liability

In no event will IISC or any other person involved in the creation, production, or
distribution of the software be liable to you on account of any claim for any damages,
including any lost profits, lost savings, or other special, incidental, consequential, or
exemplary damages, including but not limited to any damages assessed against or paid by
you to any third party, arising out of the use, inability to use, quality, or performance of
such software and users manuals, even if IISC or any other such person or entity has been
advised of the possibility for such damages, or for any claim by any party. In addition,
IISC or any other person involved in the creation, production, or distribution of the
software shall not be libel for any claim by you or any other party for damages arising out
of the use, inability to use, quality, or performance of such software and users manuals,

ii JSheet Programmer’s Guide

based upon principals of contract warranty, negligence, strict liability for the negligence of
IISC or other tort, breach of any statutory duty, principals of indemnity or contribution, the
failure of any remedy to achieve its essentials purpose, or otherwise.

Some states do not allow the limitation or exclusion of liability for incidental or
consequential damages, so the above limitation may not apply to you.

 iii

The JSheet Programmer’s Guide

 TABLE OF CONTENTS

INTRODUCTION.. 1
About This Manual..1

CHAPTER 1: THE JSHEET APPLET.. 3
<APPLET> Tag Attributes..5
JSheet Applet Tag Parameters...6
Hiding the JSheet Applet...8
The JSChart Applet ...8
JSChart <applet> Tag Parameters ...9

CHAPTER 2: USING JAVASCRIPT WITH THE APPLET 11
A JavaScript Example ...12
Using Applet APIs...19
Determining the Browser Type ...21
Array/Vector Conversion ..21
Callback Functions ..22

CHAPTER 3: USING JAVA WITH JSHEET 25
Getting Started with JSheet ...25
Using JSheet in a Window ..28

APPENDIX: JAVASCRIPT CALLBACK FUNCTIONS 33

INDEX.. 45

iv JSheet Programmer’s Guide

 1 JSheet Programmer’s Guide

INTRODUCTION

Welcome to the JSheet Programmer’s Guide. This Guide targets a
variety of users and discusses how the JSheet applet can be used at
several levels. If you are:

• familiar with HTML and want to include the JSheet applet in
your web page, or

• an experienced JavaScript programmer who wants HTML
controls to interact with the JSheet applet, or

• an experienced Java programmer who wants to develop a servlet
or Java application using the JSheet Application Programming
Interface (API),

this Guide contains information to help you.

About This Manual
This Guide contains this Introduction, three chapters, and an appendix.

Chapter 1, The JSheet Applet, explains how to include the JSheet applet
in your web page. In addition to standard HTML attributes, the JSheet
applet also can accept specialized parameter tags that are native to the
applet and allow you to customize the default appearance and behavior
of the JSheet applet.

2

Introduction

JSheet Programmer’s Guide

Chapter 2, Using JavaScript with the Applet, explains how to use
JavaScript to access the JSClient functionality, once the JSheet applet
has been included in an HTML file.

Chapter 3, Using Java with JSheet, explains how to use the API to create
applications that use the power of the JSServer engine. This chapter
discusses how to connect to a JSheet server, display data, interact with
the worksheet grid, respond to events, modify permissions, and
manipulate charts.

The Appendix, JavaScript Callback Functions, contains a complete list
and description of the JavaScript functions used to handle callbacks
generated from the JSheet Server.

Before You Begin
Chapter 1 assumes that you have a basic understanding of HTML tags
and attributes and know how to build a web page. Chapter 2 assumes
that you have a basic understanding of JavaScript and the document
object model (DOM). Chapter 3 assumes that you have a basic
understanding of Java, are experienced as a Java developer, and that you
have either a JDK installed, or a visual Integrated Development
Environment (IDE), such as JBuilder by Borland or Visual Café by
WebGain.

NOTE: If you are using the JDK with a text editor, you must include
the JSheet.jar file in your CLASSPATH environment variable. If you are
using a visual IDE, you should refer to your documentation to learn how
to add it to your project. The examples in Chapter 3 use the JDK/text
editor option.

 JSheet Programmer’s Guide 3

CHAPTER 1: THE JSHEET
APPLET

The JSheet applet is displayed in a web browser by including an <applet>
tag in a page of HTML. Similar to the tag, the <applet> tag
provides the browser with the source for the object (the applet) to be
displayed, and specifies the dimensions of the object. When the JSheet
applet is loaded, a spreadsheet grid and interface are displayed in the
browser. The web page user interacts directly with a JSheet workbook
that resides on the server. The following example shows an <applet> tag
that is used to load the JSheet applet.

Example

<applet
 code="com.iisc.jwc.jsheet.JSClient"
 archive="jsheet.jar"
 width="600"
 height="400"
 mayscript="true"
 codebase="."
>
</applet>

The code and archive attributes tell the browser to load the Java applet
contained in the class com.iisc.jwc.jsheet.JSClient within the Java archive
(.jar) file named JSheet.jar. The codebase attribute tells the applet the

4

Chapter 1: The JSheet Applet

JSheet Programmer’s Guide

directory in which the .jar file resides. In the example above, the .jar file
resides in the same directory as the HTML file.

The width and height attributes instruct the browser to display the applet
in a rectangular area that is 600 pixels wide and 400 pixels tall. The
mayscript attribute is a Netscape-only option that enables scripting (via
JavaScript) of the applet from the HTML page.

In addition to standard HTML attributes, the <applet> tag also can accept
specialized parameter tags that are native to the applet. These <param>
tags allow you to customize the default appearance and behavior of the
JSheet applet. The following example expands the earlier <applet> tag
example to include <param> tags.

Example

<applet
 code="com.iisc.jwc.jsheet.JSClient"
 archive="jsheet.jar"
 width="600"
 height="400"
 mayscript="true"
 codebase="."
>
<param name="host" value="moondance">
<param name="bookname" value="pmtcalc.jss">
<param name="ShowFormulaBar" value="true">
</applet>

In the example above, parameter tags instruct the JSheet applet to
connect to a host machine named moondance and open a workbook file
named pmtcalc.jss from the server-side workspace of the user. The
ShowFormulaBar parameter tag is set to true to display the optional
formula bar in the applet.

5

Chapter 1: The JSheet Applet

JSheet Programmer’s Guide

<APPLET> Tag Attributes
The following attributes are required when constructing a JSheet
<applet> tag.

Attribute Description Example
code The name of the file containing the

source code for the applet.
code="com.iisc.jwc.jsheet.JSClient"

archive The name of the Java source code
archive file to be pre-loaded.

archive="JSheet.jar"

width The width, in pixels, of the applet. width="600"

height The height, in pixels, of the applet. height="400"

mayscript A Netscape-only flag enabling
scripting (via JavaScript) of the
applet instance.

mayscript="true"

The following attributes are optional for the <applet> tag.

Attribute Description Example
codebase The path (relative or absolute) to the file

containing the source code (.jar files) for the
applet. Relative paths start from the base URL
default of the document, "."

codebase="../../"

name The name for a specific instance of the applet.
The default is none.

name="JSheetApplet"

alt Text to be displayed if the browser understands
the <applet> tag but cannot run Java applets.
The default is none.

alt="Payment Calculator"

align The alignment of the applet: left, right, top,
texttop, middle absmiddle, baseline, bottom,
absbottom. The default is bottom.

align="left"

hspace The pixel offset on either side of the applet.
The default is 0.

hspace="5"

vspace The pixel offset above and below the applet.
The default is 0.

vspace="10"

6

Chapter 1: The JSheet Applet

JSheet Programmer’s Guide

JSheet Applet Tag Parameters
The JSheet applet can be changed dynamically through the use of
parameter tags. The table below describes each of the available
parameter tags.

Parameter Default Description

background Oxffffff
(white)

The background color to be used for the visible frame
area. The user provides the standard HTML-style RGB
reference.

bookName none The name of the workbook to create or open on launch.

bookPassword none The password for the workbook that is created or opened
on launch. If no password is specified, it is assumed the
workbook does not have a password.

connect true Attempts to connect to the server on startup.

hideExceptions false Disables exception message windows.

hideInfoDialogs false If set to true, dialog boxes are displayed when receiving
error messages; otherwise, an error is displayed in the
status bar and the window.

hidePopupMenu false Displays a popup menu when the user right-clicks over
the applet.

host current host Sets the host name to which to connect. If the value is
blank, attempts to connect to the web server’s host
machine. If that is not available, a dialog box is
displayed, allowing the user to specify a name.

openMode none The mode in which you want an existing book to be
opened.

openNewBook false Creates a new workbook if set to true, or opens an
existing workbook if set to false. If the bookname
parameter is set, the name specified by that parameter is
used for the new book name.

7

Chapter 1: The JSheet Applet

JSheet Programmer’s Guide

password none The user password to use when connecting to the host
machine.

publicRead true Read permissions are granted for all new workbooks
created on the client.

publicSave true Save permissions are granted for all new workbooks
created on the client.

publicWrite true Write permissions are granted for all new workbooks
created on the client.

saveable true Eliminates the prompt that asks if you want to save.

sheetName none The name of the sheet within the workbook on which the
chart is located. By default the sheets are labeled Sheet1,
Sheet2, Sheet3, and so forth.

showFormatBar true Displays the format bar, to allow for the easy formatting
of fonts, styles, colors, and alignments for the data
entered into the worksheet.

showFormulaBar true Displays the formula bar, to allow for the easy creation
or editing of cell formulas and named ranges.

showStatusBar true Displays the status bar at the bottom of the applet.

templateName none The name of the template that you want to use for the
new workbook.

throwExceptions true Enables throwing exceptions.

tracking none Sets the tracking method you want to use for updating
cells.

trackingDown The selected color fills the cell when the cell value
decreases.

trackingDuration -1 The number of seconds to display the celltracking
changes.

trackingUp The selected color fills the cell when the cell value
increases.

user none The user name to use when connecting to the host
machine.

8

Chapter 1: The JSheet Applet

JSheet Programmer’s Guide

Hiding the JSheet Applet
There may be times when it is preferable to hide the applet. To hide the
applet, specify 1 as the value for both the width and height attributes.
Alternatively, you can use the hidegridcomponents applet parameter to
hide the applet. The code in the following example hides the applet.

Example

<applet
 code="com.iisc.jwc.jsheet.JSClient"
 archive="JSheet.jar"
 width="1"
 height="1"
 mayscript="true"
 codebase="."
>
<param name="hidegridcomponets" value="true">
</applet>

IMPORTANT: Do not attempt to create an applet of zero width and
zero height. When using Netscape, the resulting behavior is
unpredictable.

The JSChart Applet
There are two main access points to the charting facilities of JSheet. Via
the JSheet interface, you can select View/Charts from the menu to
display snapshot images of a chart. Or, you can use the JSChart applet to
display and manipulate charts.

A chart is displayed in a web browser by including a JSChart <applet>
tag in a page of HTML. The following example shows a simplified
JSChart applet element.

9

Chapter 1: The JSheet Applet

JSheet Programmer’s Guide

Example

<html>
<body>

 <applet
 name="jschart"
 code="com.iisc.jwc.jschart.JSChart"
 archive="JSchart.jar"
 width="400"
 height="600"

 <param name="host" value="zeus">
 <param name="user" value="johndoe">
 <param name="password" value="test">
 <param name="bookname" value="/simple.jss">
 <param name="sheetname" value="sheet1">
 <param name="chartname" value="Chart1">
 </applet>

</body>
</html>

JSChart <applet> Tag Parameters
The JSChart applet can be changed dynamically through the use of
parameter tags. The table below describes each of the available
parameter tags.

Parameter Default Description

background Oxffffff
(white)

The background color to be used for the visible
frame area. The user provides the standard HTML-
style RGB reference.

bookname none The name of the book that contains the chart.

10

Chapter 1: The JSheet Applet

JSheet Programmer’s Guide

bookpassword none The password for the book that contains the chart. If
no password is specified, it is assumed the book does
not have a password.

chartname none The name of the chart to display. If a user-defined
name is not specified, charts are named Chart1,
Chart2, Chart3, and so forth by default.

host current host Sets the host name to which to connect. If the value
is blank, attempts to connect to the web server’s host
machine. If that is not available, a dialog box is
displayed, allowing the user to specify a name.

password none The user password to use when connecting to the
host machine.

sheetname none The name of the sheet within the workbook on which
the chart is located. By default, the sheets are labeled
Sheet1, Sheet2, Sheet3, and so forth.

smartfit true If the frame area provided is smaller than the image,
when smartfit is set to true, the image is scaled down
to fit the frame. However, the image is not stretched
to fit a frame area that is larger than the image.
When smartfit is set to false, the image is stretched
or scaled down to fit the frame, regardless of the size
of the frame or the image.

throttle 5 seconds The period of time, in seconds, that JSChart throttles
back update requests. If a value of 0 is entered, the
chart never updates.

user none The user name to use when connecting to the host
machine.

 JSheet Programmer’s Guide 11

CHAPTER 2: USING
JAVASCRIPT WITH THE
APPLET

This chapter explains how to construct the JSheet <applet> tag, the
various parameters that can be used with the <applet> tag, and how to
work with the applet in JavaScript. A basic understanding of JavaScript
and the document object model (DOM) is assumed.

Once the <applet> tag has been included in an HTML file, the JSClient
functionality can be accessed using JavaScript in an HTML page.
Specifically, calls are made to JSClient methods through the applet.
While not all browsers support making calls to Java methods from
JavaScript, this functionality is supported in both Internet Explorer and
Netscape Navigator.

The Internet Explorer and Netscape Navigator browsers provide built-in
software that allows JavaScript to interact with Java applets. The basic
procedure is to:

• insert an applet into an HTML page using an <applet> tag.
• use the DOM to extract the applet object and assign the applet

object to a JavaScript variable.
• use the following JavaScript syntax to access any of the Java

methods of the applet:

 <applet variable name>.<applet method>

12
 JSheet Programmer’s Guide

Chapter 2: Using JavaScript with the Applet

The following HTML example demonstrates this procedure.

Example

<applet name="JSApplet" . . . >
<param value="bookname" value="testWorkbook.jss">
</applet>

<script language="JavaScript">
var myApplet = document applets["JSApplet"];
alert ("Number of sheet in workbook: " + myApplet.getSheetCount());
</script>

In the above example, getSheetCount is a method that retrieves the
number of sheets in the currently open workbook. When the HTML
page loads, a message is displayed that describes the number of sheets in
the currently open workbook.

getSheetCount is a Java method found in the JSClient class. JSClient is
the Java class that corresponds to the JavaScript myApplet variable. (For
more information on using JSClient methods from within JavaScript, see
the section Using Applet APIs, later in this chapter.)

A JavaScript Example
A complete JavaScript example is provided below. At this point, you
can simply skim the code; explanations that reference the code are
presented in the sections that follow.

Chapter 2: Using JavaScript with the Applet

JSheet Programmer’s Guide 13

Example

<html>
<head>
<title>JavaScript Example</title>
<script src="../Client/jsmllib.js"></script>
<script language="JavaScript">
<!--
function doIt()
{

var myApplet = document.applets["JSApplet"];
var cell = javaCell(myApplet, 0, 1, 1);
myApplet.setCellEntry(cell, "Hello");
cell.col = 2;
myApplet.setCell Entry(cell, "World! ");
cell.col = 1;
alert(myApplet.getCellEntry(cell));

}
//-->
</script>
</head>

<body>
<applet

name="JSApplet"
codebase="../Client"
code="com.iisc.jwc.jsheet.JSClient"
archive="JSheet.jar"
mayscript="true"
width="500" height="200">
<param name="OpenNewBook" value="true">
<param name="user" value="demo">
<param name="password" value="demo">

</applet>

<form>
<input type="button" value="Insert into A1 & B1" onclick="doIt()">

14
 JSheet Programmer’s Guide

Chapter 2: Using JavaScript with the Applet

<script language="JavaScript">jsRegList.setDefaults("","JSApplet", "book.jss", 0);
</script>
cell A1:
<input type="text" name="myTextControl" onchange="jsVerify(this)">
<script>
jsRegList.add("JSML_TEXT", 0, new Cell(1,1), "myTextControl", "", "", TRUE,
TRUE, "", "");
</script>
</form>

</body>
</html>

The HTML code in the example above renders as shown in the following
illustration.

Figure 2-1

Chapter 2: Using JavaScript with the Applet

JSheet Programmer’s Guide 15

When you click the Insert into A1 & B1 button, Hello appears in cell A1
and World! appears in cell B1. Hello is displayed in the text box and a
pop-up dialog that contains Hello is also displayed. If you modify the
text box and then click elsewhere, the modified value appears in cell A1.

The Button Control
In the previous code example, the <applet> tag with an OpenNewBook
parameter causes a new JSheet grid to appear. When the Insert into A1 &
B1 button is clicked, the doIt() function is called. In the doIt() function, a
JavaScript-accessible version of the applet is put into the myApplet
variable when the following line is executed:

 var myApplet = document.applets["JSApplet"];

The following line uses the myApplet variable to call the setCellEntry
method of JSClient:

 myApplet.setCellEntry(cell, "Hello");

NOTE: JavaScript can access the setCellEntry method only because it
is defined as public. View javadoc for the JSClient class to verify that
the method is public.

The setCellEntry method expects a JSheet Cell object as its first
parameter. The following line creates a JSheet Cell object:

 var cell = javaCell(myApplet, 0, 1, 1);

16
 JSheet Programmer’s Guide

Chapter 2: Using JavaScript with the Applet

javaCell(myApplet, 0, 1, 1) is a call to the javaCell JavaScript constructor.
It receives four parameters:

• applet. The myApplet variable in this example.
• sheetindex. The sheet from within which the cell comes. 0

indicates the first sheet.
• row. 1 indicates the first row in the sheet.
• column. 1 indicates the first column in the sheet.

The javaCell constructor returns a JSheet Cell object. Since the cell
variable describes a row 1, column 1 cell in the first sheet, the first call to
setCellEntry puts the Hello string in cell A1 in the first sheet.

The javaCell constructor is defined in the jsmllib.js file. To access
anything from jsmllib.js, you must include that file in your HTML page,
using the following line:

 <script src="../Client/jsmllib.js"></script>

The "../Client/" path indicates where the jsmllib.js file is stored in relation
to the HTML page. For this example, the jsmllib.js file is found one
directory level above the HTML file, and then down one directory level
to the Client directory.

Since the javaCell constructor returns a copy of a Java JSheet Cell object,
the cell variable can be used to access any of the public methods or fields
of the Cell class. Since the Cell column field is public, the column value
of the cell variable is changed to 2 with the following line:

 Cell.col = 2;

Chapter 2: Using JavaScript with the Applet

JSheet Programmer’s Guide 17

NOTE: You can view Javadoc for the Cell class to verify that the
column field of Cell is public.

Since the cell variable now describes a row 1, column 2 cell in the first
sheet, the following call to setCellEntry puts the World! string in cell B1
of the first sheet:

 applet.setCellEntry(cell, "World!");

The final two lines in the doIt() function change the column value of the
cell back to 1 and then print the value of the cell with a pop-up dialog:

 cell.col = 1;
 alert(applet.getCellEntry(cell));

The Text Box Control
The text box control illustrates bi-directional interaction with the applet.
Changes in the value of cell A1 cause the text box value to update;
changes in the text box value cause the value of cell A1 to update.

The jsmllib.js library contains functions that help with the
implementation of control/applet interaction: jsRegList.setDefaults(),
jsVerify(), and jsRegList.add(). Call the jsRegList.setDefaults function one
time. That call should appear above all of the controls that call the
jsVerify and jsRegList.add functions.

Example

jsRegList.setDefaults("","JSApplet", "book.jss", 0);

18
 JSheet Programmer’s Guide

Chapter 2: Using JavaScript with the Applet

jsRegList.setDefaults receives the following four parameters:

• appletFrame. The name of the frame that contains the applet.
Use "" for single-frame applications.

• applet. The name of the applet as it appears in the <applet> tag.
• workbook. The name of the workbook file. book.jss is the

default name for new workbooks.
• sheetIndex. Indicates from which sheet the cell comes. 0

indicates the first sheet.

To cause a change in the text control to affect the same change in the
associated applet cell, call the jsVerify function. For example:

<input type="TEXT" name="myText Control" onchange="jsVerify(this) ">

jsVerify receives a control object as its single parameter. In this example,
this refers to the enclosing text box control.

Call the jsRegList function, as follows, to set up an association between a
particular applet cell and a particular control:

jsRegList.add("", 0, new Cell(1,1), "myTextControl", "", "", true, true, "", "");

jsRegList.add receives the following ten parameters:

• type. One of the JSML control types. (In this example, the
empty string, "", is used.)

• sheetIndex. Indicates from which sheet the associated cell comes.
0 indicates the first sheet.

Chapter 2: Using JavaScript with the Applet

JSheet Programmer’s Guide 19

• cell. Indicates the applet cell with which the control is
associated. The Cell constructor is a constructor in jsmllib.js that
receives row and column parameters.

• elementName. The name of the control as specified in the name
attribute of the HTML control tag.

• displayFunction. The name of a JavaScript function that can be
used to modify the text before it is displayed in the control.

• verifyFunction. The name of a JavaScript function that can be
used to verify the text entered into the control before it is placed
in the spreadsheet.

• readFlag. If true, update the control each time the applet cell
changes.

• writeFlag. If true, update the applet cell each time the control
changes.

• displaySheet. The sheet that contains the applet cell; defaults to
the sheet specified in the call to jsRegList.setDefaults().

• displayRange. The range that contains data to be displayed. This
parameter is used only for certain JSML control types ("" in this
example).

Using Applet APIs
You can access any of the public classes in your installed JSheet.jar file
by using JavaScript in an HTML page. Specifically, you can access the
public methods and fields within the public classes. These methods and
fields are referred to as the application programming interface (API).

The class that you will access the most often is the JSClient class, which
is instantiated as the JSheet applet. The JSheet applet and its public
methods and fields are accessed in an HTML page, as detailed above.

20
 JSheet Programmer’s Guide

Chapter 2: Using JavaScript with the Applet

Many JSClient methods require JSheet objects as parameters (e.g.,
applet.copy(range)). The JSClient.copy method receives a range object
parameter. To create a JavaScript version of a Java object, call the
createObject() method of JSClient. The following example creates a
JSheet range object.

Example

range = applet.createObject("com.iisc.jwc.jsheet.Range");

The createObject method receives the full name of the target class. (To
find full class names, refer to the javadoc.) After creating the range
object as shown above, you must initialize it.

NOTE: Because it is common to need range and cell objects in your
JavaScript code, the javaRange and javaCell constructors are included in
the jsmllib.js library. They take care of the call to applet.createObject and
the subsequent initialization. (Refer to the previous HTML code for an
example of a call to javaCell.)

Use the following line to create and initialize a JSheet Range object:

range = javaRange(myApplet, 0, 1, 1, 3, 3);

javaRange(myApplet, 0, 1, 1, 3, 3) is a call to the javaRange constructor. It
receives the following six parameters:

• applet. The myApplet variable in this example.
• sheetIndex. Indicates from which sheet the cell comes. 0

indicates the first sheet.
• row. 1 indicates the first row.
• column. 1 indicates column A.
• bottom. 3 indicates the third row.
• right. 3 indicates column C.

Chapter 2: Using JavaScript with the Applet

JSheet Programmer’s Guide 21

After creating range and cell objects using javaRange and javaCell, you
can test whether the cell of the Cell object is within the range of the
Range object by calling the public contains method of the range. For
example:

if (range.contains(cell))
{

 alert("the cell is outside of the given range");
 }

Determining the Browser Type
Unfortunately, certain code is browser-dependent in terms of how it is
rendered. If you need to use browser-dependent code, you may want
your code to determine the current browser type and then act
accordingly. If you include the jsmllib.js in your HTML page, you can
access the following three boolean flag variables:

 IslE4orHigher isNS4 isNS5orHigher

In rendering your page and loading jsmllib.js, the code detects the
browser type and then sets the appropriate boolean flag to true and the
other two flags to false.

Array/Vector Conversion
Arrays cannot be passed between JavaScript and Java. Therefore, from
JavaScript, you should not call JSClient methods that receive an array
parameter or return an array. Since vectors can be passed between
JavaScript and Java, you should call a parallel method that uses a vector
instead of an array.

22
 JSheet Programmer’s Guide

Chapter 2: Using JavaScript with the Applet

In the following examples, assume applet and range are correctly
instantiated JavaScript objects, valuesArray is an array of values, and
valuesVector is a vector object of values.

Examples:
Will Not Work Will Work
applet.getNamedRanges() applet.getNamedRangesAsVector()
applet.setRangeValuesUsingArray(range,
valuesArray)

applet.setRangeValuesUsingVector(range,
valuesVector)

Unfortunately, JavaScript does not have a native vector object. Thus,
after receiving a Java Vector object (from a call to
getNamedRangesAsVector), you may want to convert the vector to an
array. That functionality is implemented by the vectorToArray function of
jsmllib.js. To call a method that has a vector argument, you can start with
an array, convert it to a vector, and then pass the vector. That
functionality is implemented by the arrayToVector function of jsmllib.js.

The vectorToArray method receives the following two parameters:

• rows. The number of rows in the array.
• vector. A Java Vector object.

The arrayToVector method receives the following two parameters:

• applet. A JSClient object.
• array. A JavaScript array.

Callback Functions
If you need to handle JSheet events, include callback functions in your
HTML page. Examples of typical JSheet events are bookOpened,
bookClosed, cellValueUpdated, and exceptionThrown. For a complete list

Chapter 2: Using JavaScript with the Applet

JSheet Programmer’s Guide 23

and description of JSheet callback functions, see Appendix, JavaScript
Callback Functions.

When a callback event occurs, the callback method associated with the
event is called in the JSheet applet. That callback method then attempts
to call the JavaScript version of the callback. Depending on whether
there is a need to handle a particular event, the JavaScript developer can
include or omit a JavaScript version of the callback associated with the
event. As with all JavaScript functions, callback functions should be
placed in the head section of the HTML page.

The following HTML code implements the bookOpened callback
function. After the bookOpened event is fired, the bookOpened method in
the JSheet applet is called. That method then finds and calls the
following bookOpened JavaScript function. For a description of the
bookName parameter of the bookOpened function, as well as descriptions
of all of the callback function parameters, refer to the Appendix.

Example

<html>
<head>
<script language="JavaScript">
<!--
 function bookOpened(bookName)
 {
 alert("You have opened " + bookName);
 }
//-->
</script>
</head>
. . .

24
 JSheet Programmer’s Guide

Chapter 2: Using JavaScript with the Applet

 JSheet Programmer’s Guide 25

CHAPTER 3: USING JAVA
WITH JSHEET

As discussed in the previous chapters, the JSheet Client (JSheet.jar) can
be run as an applet within a web page, with or without JavaScript calls to
the applet. This chapter focuses on how JSheet Client can be run as a
standalone Java application, or as an application programming interface
(API) for custom application development. Using the API, the Java
developer can access and manipulate the JSheet applet and create custom
applications using the power of the JSheet server.

To run JSheet as a standalone application, make certain you are in the
directory in which jsheet.jar resides and execute the following command
from the command line:

 java -classpath JSheet.jar com.iisc.jwc.jsheet.JSClient

Getting Started with JSheet
JSClient is the main class of the JSClient API and serves as the interface
to the JSheet server. JSClient must be instantiated (as shown in the
following code) before it is used within your application.

26

Chapter 3: Using Java with JSheet

JSheet Programmer’s Guide

Example

import com.iisc.jwc.jsheet.jsClient;
public class JSheetSample1
{
 private JSClient jsClient;
 class MySessionAdapter extends SessionAdapter
 {
 public void bookOpened(SessionEvent e)
 {
 System.out.println(“A new book was opened.”);
 }
 }
 public JSheetSample1()
 {
 jsClient = new JSClient();
 jsClient.setHostName(“localhost”);
 jsClient.setUserName(“demo”);
 jsClient.setUserPassword(“demo”);
 jsClient.setOpenNewBook(true);
 MySessionAdapter sessionAdapter = new MySessionAdapter();
 jsClient.addSessionListener(sessionAdapter);
 jsClient.start();
 }
 catch(Exception e)
 {
 e.printStackTrace();
 }
 }
 public static void main(String args[])
 {
 JSheetSample1 jsheetSample = new JSheetSample1();
 }
}

Chapter 3: Using Java with JSheet

JSheet Programmer’s Guide 27

Once a JSClient instance is established, you can connect to JSheet server.
Note that the code uses the API to set the connection information.
Alternatively, the user will be prompted for a host name, user name, and
password.

Additionally, the code includes the setOpenNewBook() method so that a
new workbook is opened as part of the connection activity. The
setOpenNewBook() method takes one boolean parameter and instructs
JSheet server whether to open a new workbook on startup, or to wait for
the user to select Open from the JSheet menu. In the example above, the
parameter is set to true and the new book is opened.

The JSheet Client API provides a series of event listeners to help identify
actions performed with the JSClient object. To minimize the coding
effort, adapters have been provided for these event listeners. In this
example, the sessionadapter is used. Its methods are described in the
table below.

Method Description
killClient() Invoked when the server sends a terminate message.
bookOpened() Invoked when this client opens a book.
bookClosed() Invoked when this client closes a book.
messageReceived() Invoked when the server sends a message to this client.

As shown in the previous code example, the bookOpened() method was
used to determine if and when a new book was opened. Also, since the
listener must be added to the jsClient object, the method
addSessionListener() was called.

When the code is executed, the text message, “A new book was opened.”
is displayed.

28

Chapter 3: Using Java with JSheet

JSheet Programmer’s Guide

Using JSheet in a Window
In many circumstances, you may prefer to see a worksheet grid when
you use JSheet. Since a frame is used as the display vehicle for the
worksheet grid, the JSheet user interface must be added to the frame
using the this.add() method.

Example

import java.awt.*;
import java.awt.event.*;
import com.iisc.jwc.jsheet.*;

public class JSheetSample2 extends Frame
{
 private JSClient jsClient;
 public JSheetSample2()
 {
 jsClient = new JSClient();
 jsClient.setHostName(“localhost”);
 jsClient.setUserName(“demo”);
 jsClient.setUserPassword(“demo”);
 jsClient.setOpenNewBook(true);
 jsClient.start();
 this.setSize(800, 300);
 this.add(jsClient, BorderLayout.CENTER);

 //Provide the ability to shut down the application window.
 this.addWindowListener(
 new WindowAdapter()
 {
 public void windowClosing(WindowEvent e)
 {
 System.exit(0);
 }
 }
);

Chapter 3: Using Java with JSheet

JSheet Programmer’s Guide 29

 }
 public static void main(String args[])
 {
 JSheetSample2 jsheetSample = new JSheetSample2();
 jsheetSample.show();
 }
}

When you execute the code shown in the example above, an application
window is displayed with a formula bar, format bar, worksheet grid, and
status bar. (Refer to the JSheet User Guide for information on how to
identify and use the components and features of the JSheet user
interface.)

Interacting with Java Components
This section explains how Java controls can be made to interact with the
JSheet API. In the following example, a button is created that interacts
with the JSheet API. An explanation follows the code.

Example

import java.awt.*;
import java.awt.event.*;
import com.iisc.jwc.jsheet.*;

public class JSheetSample3 extends Frame
{
 private JSClient jsClient;
 private Button button;
 private Panel upperPanel; //holds the jsClient applet
 private Panel midPanel; //holds the button

 class ButtonListener implements ActionListener
 {

30

Chapter 3: Using Java with JSheet

JSheet Programmer’s Guide

 public void actionPerformed(ActionEvent e)
 {
 try
 {
 Cell a1 = new Cell(1,1);
 if (jsclient.getCellEntry(a1).equals(“ “))
 jsclient.setCellEntry(a1, “Hello”);
 else
 jsclient.setCellEntry(a1, “ “);
 }
 catch (JSException jsException)
 {
 jsclient.errorMsgForException(jsException);
 }
 }
 }

 public JSheetSample3()
 {
 jsClient = new JSClient();
 jsClient.setHostName("localhost");
 jsClient.setUserName("demo");
 jsClient.setUserPassword("demo");
 jsClient.setOpenNewBook(true);
 jsClient.start();
 this.setSize(800, 300);

 // Insert applet into a panel.
 // Insert panel into top of frame.
 upperPanel = new Panel();
 upperPanel.setLayout(new BorderLayout());
 upperPanel.add(jsclient, “Center”);
 this.add(upperPanel, BorderLayout.CENTER);

 button = new Button(“Insert/delete ‘Hello’ in cell A1”);
 button.addActionListener(new ButtonListener());

Chapter 3: Using Java with JSheet

JSheet Programmer’s Guide 31

 // Insert button into a panel.
 // Insert panel into bottom of frame.
 midPanel = newPanel()’
 midPanel.add(button);
 this.add(midPanel, BorderLayout.SOUTH);

 // Provide the ability to shut down the application window.
 this.addWindowListener(
 new WindowAdapter()
 {
 public void windowClosing(WindowEvent e)
 {
 System.exit(0);
 }
 }
);
 }

 public static void main(String args[])
 {
 JSheetSample3 jsheetSample = new JSheetSample3();
 jsheetSample.show();
 }
}

In the above code, note the instantiation of the button component in the
JSheetSample3 constructor. A listener is added to the button component
so that when the button is clicked, the actionPerformed event handler
method of the listener is automatically called.

Refer to the actionPerformed event handler method of the ButtonListener.
The event handler contains code that allows the user to manipulate the
value displayed in the A1 cell of the grid. Specifically, when the user
presses the button, the value in cell A1 toggles between displaying

32

Chapter 3: Using Java with JSheet

JSheet Programmer’s Guide

“Hello” and displaying nothing. To enable this toggling functionality,
the event handler first creates an instance of the cell A1. It does this by
calling the JSheet Cell constructor with row=1 and column=1 for its two
argument values. The event handler than retrieves the contents of cell
A1 by passing the newly instantiated A1 cell object (called a1 in the
above code) into the getCellEntry method of the jsClient object.
Depending on the current contents of cell A1, the value “Hello” or “ ” is
assigned to the cell. To assign a value to cell A1, the event handler
passes the A1 cell object and the assigned value into the setCellEntry
method of the JsClient object.

 JSheet Programmer’s Guide 33

APPENDIX: JAVASCRIPT
CALLBACK FUNCTIONS

This Appendix presents the JavaScript callback functions in alphabetical
order. A brief explanation of each function is provided. In addition, the
parameters required for the functions are identified and defined.

activeCellChanged(cell)

This method is called when a different cell is selected in the grid.

JavaScript function parameters:

cell - a Cell object for the newly selected cell. For Cell details, see the
javadoc for the JSheet Cell class.

activeSheetChanged(sheetIndex)

This method is called when a different sheet is selected in a workbook.

JavaScript function parameters:
sheetIndex - the index for the newly selected sheet (0-based indexing)

34

Appendix: JavaScript Callback Functions

JSheet Programmer’s Guide

bookClosed(bookName)

For a given client, this method is called when that client closes its own
workbook.

JavaScript function parameters:

bookName - name of the closed workbook

bookOpened(bookName)

For a given client, this method is called when that client opens a workbook.

JavaScript function parameters:

bookName - name of the opened workbook

bookSaved(userName)

This method is called when a shared workbook is saved.

JavaScript function parameters:

userName - the name of the logged-on user for the client who
performed the save operation

Appendix: JavaScript Callback Functions

JSheet Programmer’s Guide 35

cellStyleUpdated(range)

This method is called after the style of a cell is updated.

JavaScript function parameters:

range - a Range object for the cell specified in the CellStyleUpdated
method call. The range consists of one cell. (For details on Range,
see javadoc for the JSheet Range class.)

cellValueUpdated(cell, value, permissions)

This method is called when a value changes in a shared workbook.

JavaScript function parameters:
cell - a Cell object for the cell that was updated. (For Cell details, see
javadoc for the JSheet Cell class.)
value - the new contents of the cell that was updated
permissions - a bitmapped integer containing read/write permissions
for the updated cell.

 The permissions parameter has the following non-zero bits:
 read bit = the first bit:
 if (permissions & 1) != 0, then the cell can be read
 write bit = the second bit:
 if (permissions & 2) != 0, then the cell can be written

clientJoined(userName)

For a given client, this method is called when a different client loads in
shared mode a workbook of that client.

36

Appendix: JavaScript Callback Functions

JSheet Programmer’s Guide

JavaScript function parameters:
userName – the name of the logged-on user for the client that just
loaded a copy of the shared workbook

clientLeft(userName)

This method is called when multiple clients are sharing a workbook and one
of the clients closes a copy of the workbook.

JavaScript function parameters:
userName – the name of the logged-on user for the client that just
closed a copy of the shared workbook.

colWidthUpdated(sheetIndex, leftColIndex, rightColIndex, widths)

This method is called after the column width is adjusted in a shared
worksheet.

JavaScript function parameters:
sheetIndex - the index for the sheet in which columns were changed
(0-based indexing)
leftColIndex - the index for the left column in the group of columns
with widths that were adjusted (1-based indexing; column A has
index 1)
rightColIndex - the index for the right column in the group of columns
with widths that were adjusted
widths - array of adjusted column widths; width values are in pixels

Appendix: JavaScript Callback Functions

JSheet Programmer’s Guide 37

deletedLeft(range)

This method is called after a JSClient.deleteLeft call has been processed.

JavaScript function parameters:

range - a Range object for the range specified in the deleteLeft
method call. (For details on Range, see javadoc for the JSheet Range
class.)

deletedUp(range)

This method is called after a JSClient.deleteUp call has been processed.

JavaScript function parameters:

range - a Range object for the range specified in the deleteUp method
call. (For details on Range, see javadoc for the JSheet Range class.)

doubleClicked(cell)

This method is called when a grid cell is double-clicked.

JavaScript function parameters:

cell - A Cell object for the cell that was double-clicked. For Cell
details, see the javadoc for the JSheet Cell class.

38

Appendix: JavaScript Callback Functions

JSheet Programmer’s Guide

exceptionThrown(errorText)

This method is called when a server-generated exception is thrown.

JavaScript function parameters:
errorText - the error message for the exception

exceptionThrown(errorNumber, errorText)

This method is called when a server-generated exception has been thrown.

JavaScript function parameters:

errorNumber - the error number for the exception
errorText - the error message for the exception

forceBookClosed()

This method is called when the server closes a shared workbook.

JavaScript function parameters: none

insertedDown(range)

This method is called after a JSClient.insertDown call has been processed.

JavaScript function parameters:

range - a Range object for the range specified in the insertDown
method call. (For details on Range, see javadoc for the JSheet Range
class.)

Appendix: JavaScript Callback Functions

JSheet Programmer’s Guide 39

insertedRight(range)

This method is called after a JSClient.insertRight call has been processed.

JavaScript function parameters:

range - a Range object for the range specified in the insertRight
method call. (For details on Range, see javadoc for the JSheet Range
class.)

killClient(shutdownMode)

For a given client, this method is called when the server kills that client.

JavaScript function parameters:

shutdownMode - true indicates the server performed an immediate
shutdown; false indicates the server performed a graceful shutdown

leftColChanged(sheetIndex, leftColIndex)

This method is called after a workbook is horizontally scrolled so that there is
a new left column.

JavaScript function parameters:

sheetIndex - the index for the sheet with columns that were changed
(0-based indexing)
leftColIndex - the index for the new left column (0-based indexing;
column 1 is indicated by 0)

40

Appendix: JavaScript Callback Functions

JSheet Programmer’s Guide

messageReceived(sender, message)

For a given client, this method is called when the server or a different client
sends a message to that client.

JavaScript function parameters:

sender - user name of the message sender
message - the sent message

rangeStyleUpdated(range)

This method is called after the style of a range is updated.

JavaScript function parameters:

range - a Range object for the range specified in the
rangeStyleUpdated method call. (For details on Range, see javadoc
for the JSheet Range class.)

rowHeightUpdated(sheetIndex, topRowIndex, bottomRowIndex,
heights)

This method is called after the height is adjusted for a row or rows.

JavaScript function parameters:
sheetIndex - the index for the sheet in which rows were changed (0-
based indexing)
topRowIndex - the index for the top row in the group of rows with
heights that were adjusted (1-based indexing; row 1 has index 1)

Appendix: JavaScript Callback Functions

JSheet Programmer’s Guide 41

bottomRowIndex - the index for the bottom row in the group of rows
with heights that were adjusted
heights - the array of adjusted row heights; height values are in pixels

sheetInserted(sheetName, sheetIndex)

This method is called when a sheet is added to a shared workbook.

JavaScript function parameters:

sheetName – the name for the newly inserted sheet
sheetIndex – the index for the newly selected sheet (0-based
indexing)

sheetMoved(fromSheetIndex, toSheetIndex)

This method is called when a sheet is repositioned in a shared workbook.

JavaScript function parameters:

fromSheetIndex - index for the original position of the moved sheet
(0-based indexing)
toSheetIndex - index for the new position of the moved sheet (0-
based indexing)

sheetNameChanged(sheetName, sheetIndex)

This method is called when a sheet name changes in a shared workbook.

JavaScript function parameters:

sheetName - new name for the sheet
sheetIndex - index for the sheet whose name changed (0-based
indexing)

42

Appendix: JavaScript Callback Functions

JSheet Programmer’s Guide

sheetPropertiesUpdated()

This method is called after the properties of a shared worksheet are adjusted.

JavaScript function parameters: none

sheetRemoved(sheetIndex)

This method is called when a sheet is removed from a shared workbook.

JavaScript function parameters:

sheetIndex – the index for the sheet that was removed (0-based
indexing)

styleIndexCleared()

This method is called after a formatting style has been cleared.

JavaScript function parameters: none

textModified(cell, entryValue)

This method is called when a key is pressed while a grid cell is in edit mode.
A grid cell is put into edit mode when the user double-clicks inside the grid
cell.

Appendix: JavaScript Callback Functions

JSheet Programmer’s Guide 43

JavaScript function parameters:
cell - a Cell object for the cell that was updated. For Cell details, see
the javadoc for the JSheet Cell class.
entryValue - the current content of the cell

topRowChanged(sheetIndex, topRowIndex)

This method is called after a workbook is vertically scrolled so that there is a
new top row.

JavaScript function parameters:

sheetIndex - the index for the sheet with columns that were changed
(0-based indexing)
topRowIndex - the index for the new top row (0-based indexing; row
1 is indicated by 0)

44

Appendix: JavaScript Callback Functions

JSheet Programmer’s Guide

JSheet Programmer’s Guide 45

INDEX

A

API
running JSClient as, 27

 using controls with, 31
Applet APIs, 21
Arrays in JavaScript, 24

B

Browser type, determining, 23
Button controls, 17

C

Callback functions, 25
Charts, displaying in browsers, 9

D

Displaying
worksheet grid, 30

 JSClient in a web browser, 3

E

Event listeners, 29, 33

H

Hiding the JSheet applet, 8
HTML Applet tag attributes, 4, 5

J

javaCell JavaScript constructor, 18

JavaScript
arrays in, 24

 Callback functions, 37
using in an HTML page, 21
using to access JSClient, 13
vectors in, 24

JSChart Applet
parameters and tags, 8

JSClient
accessing using JavaScript, 13
instantiating, 27
running as a Java application, 27
running as an API, 27

JSClient applet
customizing, 4
loading in a web browser, 3

JSheet Applet, hiding, 8
JSheet Cell objects, 17

P

Parameter tags, 4, 6, 9

T

Text box controls, 19

V

Vectors in JavaScript, 24

W

Worksheet grid, displaying, 30

JSheet Programmer’s Guide 46

